Quantas bases nitrogenadas do RNA são necessárias para decodificar um aminoácido específico?

RNA (ribonucleic acid) é uma sigla em inglês que significa ácido ribonucleico. Ele é constituído por uma pentose, um fosfato e tem como bases nitrogenadas a adenina, guanina, citosina e uracila. O RNA, ao contrário do DNA, é composto por apenas uma fita e ela é produzida no núcleo celular a partir de uma das fitas de uma molécula de DNA. Depois de pronto, o RNA segue para o citoplasma celular, onde desempenhará sua principal função, que é controlar a síntese de proteínas.

Existem três tipos de RNA, o RNA mensageiro, o RNA transportador e o RNA ribossômico.

O RNA mensageiro (RNAm) é o responsável por levar a informação do DNA do núcleo até o citoplasma, onde a proteína será produzida. Como o RNA é uma cópia fiel de uma das fitas de DNA, é a partir dessa informação que o RNA mensageiro irá determinar quais são os aminoácidos necessários para a formação de determinada proteína, pois ele possui as trincas (códons) de bases nitrogenadas que definem cada aminoácido. Por exemplo, o códon UUA determina o aminoácido leucina, o códon AUG define o aminoácido metionina e assim por diante.

Não pare agora... Tem mais depois da publicidade ;)

O RNA transportador (RNAt) também é produzido a partir de uma fita do DNA. Esse RNA é assim chamado porque ele é o responsável por transportar os aminoácidos que serão utilizados na formação das proteínas até os ribossomos, onde haverá de fato a síntese das proteínas.

O RNA ribossômico (RNAr), chamado por alguns de RNA ribossomal, faz parte da constituição dos ribossomos. É nos ribossomos que a sequência de bases do RNA mensageiro é interpretada e a proteína, de fato, sintetizada.

Ouça este artigo:

As proteínas são substâncias essenciais da estrutura das células vivas, além de atuar como enzimas, participando de todos os processos bioquímicos dentro e fora das células.

O processo de tradução gênica consiste em unir aminoácidos de acordo com o a sequência de códons do RNA mensageiro. Códon é uma trinca de bases nitrogenadas do mRNA, que tem sua trinca complementar (anticódon) no RNA transportador correspondente.

Como a sequência do mRNA é determinada pelo gene (sequência de bases nitrogenadas do DNA), então a síntese de proteína representa a tradução da informação genética, por isso é chamada de tradução gênica.

Participam da tradução gênica um grande grupo de macromoléculas: mais de 50 polipeptídeos e três a cinco moléculas de RNA em cada ribossomo, pelo menos 20 enzimas ativadoras de aminoácidos, 40 a 60 moléculas diferentes de RNA transportador e várias proteínas solúveis envolvidas em iniciação, alongamento e término da tradução.

A tradução ocorre nos ribossomos, que estão situados no citoplasma. O mRNA é traduzido em proteína pela ação de uma variedade de moléculas de tRNA, cada uma específica para cada aminoácido. A sequência de nucleotídeos de uma molécula de mRNA é traduzida na sequência apropriada de aminoácidos de acordo com as determinações do código genético. Existem 64 trincas possíveis de nucleotídeos, sendo que apenas 61 codificam a produção de aminoácidos (2 sinalizam o início da tradução), enquanto 3 trincas correspondem a sequências de término da tradução.

A tradução tem início com a associação de um ribossomo, um mRNA e um tRNA carregando o aminácido metionina, que se ligam ao sítio P do ribossomo. O anticódon deste tRNA é UAC e seu códon no mRNA é AUG. Essa trinca consiste no códon de inicialização. Um outro tRNA liga-se ao ribossomo no sítio A.

Assim que os dois primeiros tRNAs se encaixam nos sítios P e A, o ribossomo catalisa a ligação dos aminoácidos de seus tRNAs, deslocando-se pela molécula de mRNA, espaço correspondente a uma trinca de bases.

Conforme o ribossomo se desloca, os sítios são ocupados por novos tRNAs com seus aminoácidos correspondentes ao mRNA, e as ligações entre os aminoácidos são sintetizadas, até encontrar as sequências de sinalização de término da tradução. A tradução termina quando um códon finalizador é encontrado na mesma fita de mRNA que está sendo traduzida. Os códons são UGA, UAA ou UAG. Como estes códons não são lidos, eles não têm efeito na tradução. Por fim, o polipeptídeo é liberado do ribossomo, que se torna disponível para começar a síntese de outra proteína.

Bibliografia:
Fundamentos da Genética / D. Peter Snustad, Michael J. Simmons. Rio de Janeiro: Guanabara Koogan, 2008.
Biologia Molecular do Gene / James D. Watson … [et al.]. Porto Alegre: Artmed, 2006
Biologia / José Mariano Amabis, Gilberto Rodrigues Martho. São Paulo: Moderna, 2004

Texto originalmente publicado em https://www.infoescola.com/genetica/traducao-genica/

Quantas bases nitrogenadas codificam um aminoácido?

A sequência de bases nitrogenadas (A, C, G e T) constitui o código genético. Cada sequência de 3 bases forma um códon, elemento que codifica um aminoácido.

Como decodificar o RNA?

As células decodificam mRNAs lendo seus nucleotídeos em grupos de três, chamados de códons. Aqui estão algumas características dos códons: A maioria dos códons especifica um aminoácido. Três "códons de parada" marcam o fim de uma proteína.

Quantos códons o RNAm possui com 27 bases nitrogenadas?

As quatro bases nitrogenadas do RNAm combinam-se, três a três, formando 64 códons que correspondem a apenas 20 aminoácidos.

Qual é o número de bases nitrogenadas contida no mRNA?

As quatro bases nitrogenadas do mRNA combinam-se, três a três, formando 64 códons que correspondem a apenas 20 aminoácidos. Dois ou mais códons podem codificar um mesmo aminoácido, por isso costuma-se dizer que o código genético é degenerado.