Quem e o aceptor final de hidrogênio?

Cadeia respiratória e liberação de energia

O destino dos hidrogênios liberados na glicólise e no ciclo de Krebs é um ponto crucial no processo de obtenção de energia na respiração aeróbica.

Como vimos, foram liberados quatro hidrogênios durante a glicólise, que foram capturados por duas moléculas de NADH2. Na reação de cada ácido pirúvico com a coenzima A formam-se mais duas moléculas de NADH2.

No ciclo de Krebs, dos oito hidrogênios liberados, seis se combinam com três moléculas de NAD, formando três moléculas de NADH2, e dois se combinam com um outro aceptor, o FAD, formando uma molécula de FADH2.

Através de sofisticados métodos de rastreamento de substâncias, os bioquímicos demonstraram que os hidrogênios liberados na degradação das moléculas orgânicas e capturados pelos aceptores acabam por se combinar com átomos de oxigênio provenientes do O2 atmosférico. Dessa combinação resultam moléculas de água.

Antes de reagirem como o O2, porém, os hidrogênios, percorrem uma longa e complexa trajetória, na qual se combinam sucessivamente com diversas substâncias aceptoras intermediárias. Ao final dessa trajetória, os hidrogênios se encontram seus parceiros definitivos, os átomos de oxigênio do O2. Esse conjunto de substâncias transportadoras de hidrogênio constitui a cadeia respiratória.

Quem e o aceptor final de hidrogênio?

Se os hidrogênios liberados na degradação das moléculas orgânicas se combinassem direta e imediatamente com o O2, haveria desprendidamente de enorme quantidade de energia em forma de calor, impossível de ser utilizada. Para contornar esse problema, as células utilizam um mecanismo bioquímico que permite a liberação gradual de energia. Tudo se passa como os hidrogênios descessem uma escada, perdendo energia a cada degrau. Liberada em pequenas quantidades, a energia pode ser, então, utilizada na síntese de moléculas de ATP, a partir de ADP e fosfatos.

Aceptores de hidrogênio da cadeia respiratória

As moléculas de NAD, de FAD e de citocromos que participam da cadeia respiratória captam hidrogênios e os transferem, através de reações que liberam energia, para um aceptor seguinte. Os aceptores de hidrogênio que fazem parte da cadeia respiratória estão dispostos em sequência na parede interna da mitocôndria.

O ultimo aceptor de hidrogênios na cadeia respiratória é a formação de moléculas de ATP, processo chamado de fosforilação oxidativa. Cada molécula de NADH2 que inicia a cadeia respiratória leva à formação de três moléculas de ATP a partir de três moléculas de ADP e três grupos fosfatos como pode ser visto na equação a seguir:

1 NADH2 + ½ O2 + 3 ADP + 3P   

Quem e o aceptor final de hidrogênio?
   1 H2O + 3 ATP + 1 NAD

Já a FADH2 formado no ciclo de Krebs leva à formação de apenas 2 ATP.

1 FADH2 + ½ O2 + 2 ADP + 2P  

Quem e o aceptor final de hidrogênio?
   1 H2O + 2 ATP + 1 FAD

Quem e o aceptor final de hidrogênio?

Quem e o aceptor final de hidrogênio?

Como referenciar: "Cadeia respiratória" em Só Biologia. Virtuous Tecnologia da Informação, 2008-2022. Consultado em 13/10/2022 às 02:52. Disponível na Internet em https://www.sobiologia.com.br/conteudos/bioquimica/bioquimica7.php


Por Roberta das Neves

Doutora em Microbiologia pela UFRJ

Metabolismo energético

Os seres vivos utilizam a molécula de adenosina trifosfato (ATP) como fonte de energia para diferentes ações, desde o ato de virar uma página até os batimentos cardíacos. Basicamente, o ATP é constituído por um nucleotídeo composto pela base nitrogenada (adenina) ligada a um açúcar (ribose) e três fosfatos, cuja energia é armazenada nas ligações químicas entre os fosfatos. O rompimento dessa ligação libera fosfato que é utilizado nos processos celulares.

Quando a molécula de ATP perde um fosfato, essa se torna uma molécula com dois fosfatos, denominada adenosina difosfato (ADP), entretanto, quando o ATP é degradado a sua forma mais simples, liberando dois fosfatos e, consequentemente, mais energia, torna-se uma molécula com apenas um fosfato, denominada adenosina monofosfato (AMP).  O ATP é utilizado e gerado durante os processos de respiração celular, tanto na presença de oxigênio (respiração aeróbia) quanto na ausência de oxigênio (respiração anaeróbia e fermentação)

Quem e o aceptor final de hidrogênio?
Estrutura do ATP, ADP e AMP (Foto: Objetos educacionais/Mec)

Respiração

A respiração divide-se em duas fases: a anaeróbia, que compreende a etapa da glicólise, que ocorre na ausência do oxigênio no citoplasma das células eucariótica e procariótica, e aeróbia que ocorre na presença do oxigênio. A fase aeróbia divide-se em duas etapas: o ciclo de Krebs que ocorre na matriz mitocondrial das células eucarióticas e no citoplasma das células procarióticas, e a cadeia respiratória que ocorre nas cristas mitocondriais e próximas à face interna da membrana plasmática, em eucariotos e procariotos, respectivamente.

Quem e o aceptor final de hidrogênio?
Esquema simplificado dos processos que envolvem a respiração aeróbia (Foto: Objetos educacionais/Mec)

Glicólise: nessa etapa, a glicose (C$$$_6_6$$$H$$$_{12}_{12}$$$O$$$_6_6$$$) é oxidada, em um processo denominado glicólise, usando dois ATPs por moléculas de glicose para fornecer a energia inicial. Ao final da glicólise, produzem duas moléculas de piruvato, 4 ATPs, sendo que 2 ATPs irão repor os utilizados inicialmente, havendo, portanto um saldo final de 2 ATPs e a liberação de elétrons energizados e íons H$$$^+^+$$$, são capturados por aceptores de elétrons denominados NAD$$$^+^+$$$ (do inglês Nicotinamide Adenine Dinucleotide), formando, no final da glicólise, dois equivalentes reduzidos em NADH$$$^+^+$$$

Ciclo de Krebs: o piruvato, com três carbonos, produzido na glicólise, passa para o interior das mitocôndrias, onde é oxidado até o grupo acetil, com dois carbonos, pela ação da piruvato desidrogenase, liberando uma molécula de gás carbônico (CO$$$_2_2$$$) e energia, sendo parte dela captada quando NADH$$$^+^+$$$ é reduzido, formando NADH$$$_2_2$$$ e, a outra parte da energia é captada quando o grupo acetil é combinado com a coenzima A, formando a acetilcoenzima A (Acetil CoA). O Acetil CoA combina-se com um composto de quatro carbonos, o ácido oxalacético, e libera a coenzima A, formando o ácido cítrico. Ao longo do ciclo, o ácido cítrico perde dois carbonos na forma de CO$$$_2_2$$$ e oito hidrogênios que são captados por NAD e por um outro  aceptor de elétrons chamado FAD (do inglês, Flavin Adenine Dinucleotide). Ao final, forma-se o ácido oxalacético, que novamente se unirá ao acetil CoA, reiniciando o ciclo. Durante esse processo, formam-se também duas moléculas de GTP (do inglês Guanosine Triphosphate), muito semelhante ao ATP.

Cadeia respiratória ou fosforilação oxidativa: nessas regiões há enzimas oxidativas organizadas em sequência, denominadas citocromos, que atuam como transportadores de elétrons. A essa série de enzimas dá-se o nome de cadeia respiratória. As moléculas de NADH e FADH formadas na glicólise e no ciclo de Krebs são oxidadas na cadeia respiratória, transferindo os elétrons para os citocromos. À medida que os elétrons de hidrogênio provenientes dessas moléculas passam pelos transportadores, esses são oxidados e perdem energia que é armazenada em moléculas de ATP, através da fosforilação do ADP. Por esse fato, a cadeia respiratória também é conhecida como fosforilação oxidativa. O receptor final do hidrogênio é o oxigênio, formando a água. É de extrema importância o fornecimento constante de oxigênio, caso contrário os transportadores ficariam sempre com seus hidrogênios reduzidos, sem condições de receber novos hidrogênios, interrompendo a respiração. A cadeia respiratória é responsável pela maior parte de ATP produzido pela célula. Ao final, produz-se 8 NADH$$$_2_2$$$, 2 FADH$$$_2_2$$$ e 34 ATP.

Fermentação

A fermentação ocorre na ausência do oxigênio no citosol da célula eucariótica e procariótica. A glicose é degradada em substâncias mais simples, como o ácido lático (fermentação lática) e o álcool etílico (fermentação alcoólica). Tanto na fermentação lática como alcoólica há um saldo de apenas 2 moléculas de ATP e, em ambos os processos, iniciam com o ácido pirúvico obtido da glicólise, como descrito na respiração aeróbia.

FERMENTAÇÃO LÁTICA FERMENTAÇÃO ALCOÓLICA
Realizada por certas bactérias, protozoários, fungos e células do tecido muscular (durante intensa atividade física, há ausência de oxigênio, com isso as células realizam fermentação, e a liberação do ácido lático ocasiona a fadiga muscular) e hemácias. Realizada por certas bactérias e leveduras.
Processo utilizado para produção de iogurte, conservas, entre outros. Processo utilizado para produção de vinho, cerveja, pão (o fermento biológico contendo o fungo, acrescentado na massa, reage com o açúcar, produzindo CO2 que fica armazenado em cavidades dentro da massa), obtenção de álcool pela cana-de-açúcar, entre outros.
Piruvato é reduzido a lactato pela ação da enzima lactato-desidrogenase, utilizando íons de hidrogênio provenientes da reoxidação do NADH2 formados na glicólise. Piruvato é convertido a acetaldeído através da ação piruvato descarboxilase, gerando CO2 e NADH e reoxidando o NADH, através da álcool desidrogenase, o acetaldeído é convertido em álcool etílico
Como não há oxigênio, o aceptor final de hidrogênio é o próprio piruvato. Como não há oxigênio, o aceptor final de hidrogênio é o acetaldeído.

Exercícios resolvidos

(Enem - 2012) Há milhares de anos o homem faz uso da biotecnologia para a produção de alimentos como pães, cervejas e vinhos. Na fabricação de pães, por exemplo, são usados fungos unicelulares, chamados de leveduras, que são comercializados como fermento biológico. Eles são usados para promover o crescimento da massa, deixando-a leve e macia. O crescimento da massa do pão pelo processo citado é resultante da:

a) liberação de gás carbônico. 
b) formação de ácido lático. 
c) formação de água.
d) produção de ATP.
e) liberação de calor.

Gabarito: O processo de produção de pães ocorre por fermentação alcoólica, um processo anaeróbico com produção de etanol e de gás carbônico. É o gás carbônico o responsável pelo crescimento da massa do pão. Letra A.


Os comentários são de responsabilidade exclusiva de seus autores e não representam a opinião deste site. Se achar algo que viole os termos de uso, denuncie. Leia as perguntas mais frequentes para saber o que é impróprio ou ilegal.

  • Everson Santana

    2013-10-23T13:15:53

    Ótima Iniciativa da Globo ^-^

  • Jose Junior

    2013-09-24T18:39:59

    Postem mais assuntos.

Qual o aceptor final do hidrogênio?

Esse mecanismo ocorre com a fosforilação do ADP (Adenosina Difosfato), pois oxigênio é o receptor final do hidrogênio, além de formar as moléculas de água e ATP.

Quem e o aceptor final de elétrons hidrogênios na cadeia respiratória?

IV. O oxigênio é o aceptor final dos elétrons da cadeia respiratória.

O que e um aceptor de hidrogênio?

Aceptores de hidrogênio da cadeia respiratória As moléculas de NAD, de FAD e de citocromos que participam da cadeia respiratória captam hidrogênios e os transferem, através de reações que liberam energia, para um aceptor seguinte.

Qual o aceptor final dos elétrons?

Os demais íons H+ liberados no processos se unem ao oxigênio gerando água (H2O), fazendo com que o oxigênio seja o aceptor final de elétrons.