Quando você lança dois dados em um jogo como faço para descobrir o total de pontos?

Problema
(A partir do 2º ano do E. M.- Nível de dificuldade: Médio)


Ana, Beatriz e Cecília estavam estudando juntas e encontraram o seguinte problema formulado pelo professor delas, mestre PC:
Qual é a probabilidade de que a soma dos resultados obtidos ao se lançar dois dados equilibrados e idênticos seja [tex]7[/tex]?
Ana analisa a situação e diz:
– Há [tex]36[/tex] casos possíveis para os resultados, dos quais [tex]6[/tex] são favoráveis. Logo, a probabilidade de dar a soma [tex]7[/tex] é [tex]\dfrac{1}{6}[/tex].
Beatriz discorda:
– Ana, como os dados são idênticos, não faz sentido distinguir os resultados [tex](1, 2)[/tex] e [tex](2, 1)[/tex], por exemplo. Logo, há apenas [tex]21[/tex] casos possíveis, dos quais [tex]3[/tex] são favoráveis. A probabilidade de dar soma [tex]7[/tex] é, portanto, [tex]\dfrac{1}{7}[/tex].
Cecília discorda de ambas:
– Vocês duas estão complicando a situação sem necessidade…
Há [tex]11[/tex] somas possíveis (de [tex]2[/tex] a [tex]12[/tex]). Assim, a probabilidade de dar soma [tex]7[/tex] é [tex]\dfrac{1}{11}[/tex].

Quando você lança dois dados em um jogo como faço para descobrir o total de pontos?
Imagem extraída de Freepik

Qual das três está certa?

Adaptado do PAPMEM, 2019.

Lembrete:

Quando você lança dois dados em um jogo como faço para descobrir o total de pontos?

A probabilidade de um evento ocorrer em um modelo com espaço amostral finito e equiprovável é calculada por:

Probabilidade[tex]\;\;[/tex] = número de casos favoráveis .
número de casos possíveis

Solução


Vamos inicialmente acompanhar o raciocínio da Cecília.

É claro que podemos definir o espaço amostral do experimento de "lançar dois dados equilibrados e idênticos e somar os pontos da duas faces voltadas para cima" como [tex]\Omega_1=\{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}[/tex], já que não estamos interessados nos números propriamente ditos que aparecem nas duas faces e sim nas suas somas. O problema é que esse espaço não é equiprovável!
Observe que temos apenas uma maneira de obtermos soma [tex]2[/tex], saindo [tex]1[/tex] nos dois dados, e mais de uma maneira de obtermos soma [tex]5[/tex], saindo "[tex]1[/tex] e [tex]4[/tex]" e "[tex]2[/tex] e [tex]3[/tex]", entre outras possibilidades. Com isso, [tex]P(\{2\})\ne P(\{5\})[/tex] e [tex]\Omega_1[/tex] não é equiprovável. Dessa forma, não podemos utilizar a razão entre "casos favoráveis" e "casos possíveis" e, portanto, Cecília não está certa.

Vamos agora acompanhar o raciocínio da Beatriz.

O espaço amostral definido pela Beatriz pode ser obtido a partir das possíveis combinações de resultados dos números mostrados nas duas faces voltadas para cima dos dados lançados.

[tex]\begin{array}{|c|c|c|c|c|c|c|}
\hline
\text{Dados}&1&2&3&4&5&6\\
\hline
1&1\text{ e }1&1\text{ e }2&1\text{ e }3&1\text{ e }4&1\text{ e }5&1\text{ e }6\\
\hline
2&\xcancel{2\text{ e }1}&2\text{ e }2&2\text{ e }3&2\text{ e }4&2\text{ e }5&2\text{ e }6\\
\hline
3&\xcancel{3\text{ e }1}&\xcancel{3\text{ e }2}&3\text{ e }3&3\text{ e }4&3\text{ e }5&3\text{ e }6\\
\hline
4&\xcancel{4\text{ e }1}&\xcancel{4\text{ e }2}&\xcancel{4\text{ e }3}&4\text{ e }4&4\text{ e }5&4\text{ e }6\\
\hline
5&\xcancel{5\text{ e }1}&\xcancel{5\text{ e }2}&\xcancel{5\text{ e }3}&\xcancel{5\text{ e }4}&5\text{ e }5&5\text{ e }6\\
\hline\
6&\xcancel{6\text{ e }1}&\xcancel{6\text{ e }2}&\xcancel{6\text{ e }3}&\xcancel{6\text{ e }4}&\xcancel{6\text{ e }5}&6\text{ e }6\\
\hline
\end{array}[/tex]

[tex]\begin{array}{|c|c|c|c|c|c|c|}
\hline
\text{Dados}&1&2&3&4&5&6\\
\hline
1&1\text{ e }1&1\text{ e }2&1\text{ e }3&1\text{ e }4&1\text{ e }5&1\text{ e }6\\
\hline
2&&2\text{ e }2&2\text{ e }3&2\text{ e }4&2\text{ e }5&2\text{ e }6\\
\hline
3&&&3\text{ e }3&3\text{ e }4&3\text{ e }5&3\text{ e }6\\
\hline
4&&&&4\text{ e }4&4\text{ e }5&4\text{ e }6\\
\hline
5&&&&&5\text{ e }5&5\text{ e }6\\
\hline\
6&&&&&&6\text{ e }6\\
\hline
\end{array}[/tex]

Temos, de fato, [tex]21[/tex] casos possíveis, mas o espaço amostral da Beatriz não é equiprovável!
Observe que a hipótese de que os dois dados são equilibrados nos garante que o experimento em questão é aleatório, ou seja, nenhuma das faces tem mais chance de sair em um ou em outro dado. Por outro lado, o fato de os dados serem idênticos, ou terem cores diferentes, ou um deles ter uma marquinha em uma de suas faces vai alterar o experimento e as maneiras de obtermos soma [tex]7[/tex]? NÃO!
Assim, por exemplo,
▬ temos apenas uma maneira de obtermos [tex] 1 \text{ e }1[/tex]: [tex]1[/tex] no primeiro dado e [tex]1[/tex] no segundo dado;
▬ mas temos duas maneiras de obtermos [tex] 1 \text{ e }2[/tex]: [tex]1[/tex] no primeiro e [tex]2[/tex] no segundo dado e [tex]2[/tex] no primeiro e [tex]1[/tex] no segundo dado. (Pense em um dos dados com uma marquinha; são situações diferentes que ocorrem: [tex]1[/tex] no dado com marquinha e [tex]2[/tex] no outro dado e [tex]2[/tex] no dado com marquinha e [tex]1[/tex] no outro.)
Assim, Beatriz também não está certa.

Vamos agora acompanhar o raciocínio da Ana:

Podemos definir o espaço amostral do experimento a partir da tabela abaixo, na qual aparecem pares ordenados formados por todas as possíveis combinações de resultados dos números mostrados nas duas faces voltadas para cima.

[tex]\begin{array}{|c|c|c|c|c|c|c|}
\hline
\text{Dados}&1&2&3&4&5&6\\
\hline
1&(1,1)&(1,2)&(1,3)&(1,4)&(1,5)&(1,6)\\
\hline
2&(2,1)&(2,2)&(2,3)&(2,4)&(2,5)&(2,6)\\
\hline
3&(3,1)&(3,2)&(3,3)&(3,4)&(3,5)&(3,6)\\
\hline
4&(4,1)&(4,2)&(4,3)&(4,4)&(4,5)&(4,6)\\
\hline
5&(5,1)&(5,2)&(5,3)&(5,4)&(5,5)&(5,6)\\
\hline
6&(6,1)&(6,2)&(6,3)&(6,4)&(6,5)&(6,6)\\
\hline
\end{array}[/tex]

Observamos com a tabela que temos [tex]36[/tex] pares ordenados possíveis de números mostrados nas faces voltadas para cima de cada dado e podemos considerar para o experimento o espaço amostral [tex]\Omega_2=\{(1,1);(1,2); (1,3); \ldots ;(6,4); (6,5);(6,6)\}[/tex]. Neste caso, [tex]n\left(\Omega_2\right)=36\,[/tex] e [tex]\;\Omega_2[/tex] é equiprovável, já que os dados são equilibrados.
Utilizando a tabela, vemos que as situações favoráveis a obter soma [tex]7[/tex] são:
[tex]\qquad (1,6)[/tex], [tex](2,5)[/tex], [tex](3,4)[/tex], [tex](4,3)[/tex], [tex](5,2)[/tex] e [tex](6,1)[/tex].
Consequentemente a probabilidade do evento em questão é:
[tex]\qquad \fcolorbox{#6d360f}{#f5d2b8}{$P(\{7\})=\dfrac{6}{36}=\dfrac{1}{6}$}\\
\,[/tex]
e, portanto, Ana está correta!




Solução elaborada pelos Moderadores do Blog.

Quando você lança dois dados em um jogo como faço para descobrir o total de pontos?

Se for conveniente, você pode obter um arquivo desta página em PDF. Mas, para abrir esse arquivo, é necessário que você tenha o Adobe Acrobat Reader instalado no dispositivo que você está utilizando. Caso não tenha, é só clicar AQUI para fazer o download.
Se o seu dispositivo já tem o Adobe Acrobat Reader instalado, basta copiar o arquivo abaixo e abri-lo sempre que quiser!

Link permanente para este artigo: http://clubes.obmep.org.br/blog/problema-para-ajudar-na-escola-quem-esta-correta/

Qual e o total de resultados possíveis no lançamento de dois dados?

O resultado possível no lançamento simultâneo de dois dados resulta em 36. Com base nesse espaço amostral, podemos determinar qualquer evento pertencente ao conjunto dos possíveis resultados.

Quando lançamos um dado Quais são os resultados possíveis de acontecer?

No lançamento de um dado comum qualquer, os seis resultados possíveis têm a mesma chance de acontecer. Suponha que um dado foi lançado e o resultado foi 2. Se esse dado for recolhido e lançado novamente, é possível que qualquer resultado ocorra, até mesmo o número 2.

Qual o resultado da soma de um dado?

A soma de todas as faces de um dado comum será sempre 21. 1+2+3+4+5+6 = 21. Vamos aos exemplos: Nos dados habitualmente usados em jogos, a soma dos pontos de duas faces opostas deve ser sempre igual a 7.

Qual e a probabilidade de se jogar dois dados e a soma das faces viradas para cima ser igual a 7?

Há 11 somas possíveis (de 2 a 12). Assim, a probabilidade de dar soma 7 é 111.