Qual é o número de vértices de um poliedro convexo?

Vamos observar uma propriedade nos poliedros convexos a seguir:

Cubo
Vértices: 8
Arestas: 12
Faces: 6

Somando o número de vértices com o número de faces, temos: 8 + 6 = 14. Observe o número de arestas. Guarde esses dois números!

Octaedro
Vértices: 6
Arestas: 12
Faces: 8

Fazendo a mesma conta com o octaedro: 6 + 8 = 14. Observe o número de arestas. Guarde esses dois números novamente!

Pirâmide quadrangular
Vértices: 5
Arestas: 8
Faces: 5

Na pirâmide, o mesmo: 5 + 5 = 10. E o número de arestas?

O que aconteceu em todos os casos?

O número de vértices, somado ao número de faces, é igual ao número de arestas mais 2!

Essa é a Relação de Euler para poliedros convexos:

Exercícios resolvidos usando a Relação de Euler

1) (FAAP - SP) Num poliedro convexo, o número de arestas excede o número de vértices em 6 unidades. Calcule o número de faces.

Resolução:

De acordo com o enunciado, temos:
A = V + 6

Usando a Relação de Euler e substituindo A de acordo com a igualdade acima:

V + F = 2 + A
V + F = 2 + V + 6

Eliminando V:

F = 8

O número de faces é igual a 8.

2) (Fatec - SP) Um poliedro convexo tem 3 faces com 4 lados, 2 faces com 3 lados e 4 faces com 5 lados. Qual é o número de vértices desse poliedro?

Resolução:

Do enunciado, sabemos que
Número de faces: 3 + 2 + 4 = 9

Número de arestas:
3 faces com 4 lados: 3 . 4 = 12
2 faces com 3 lados: 2 . 3 = 6
4 faces com 5 lados: 4 . 5 = 20
Somando: 12 + 6 + 20 = 38

Atenção: as faces são unidas, duas a duas, por uma aresta. Ao contarmos todas as arestas de todas as faces, cada aresta é contada duas vezes, uma para cada face "grudada" nela. Assim, esse número, na verdade, é o dobro do número real de arestas do poliedro. Logo:

A = 38 ÷ 2 = 19.

Usando, agora, a Relação de Euler, temos:

V + F = 2 + A
V + 9 = 2 + 19
V = 21 - 9 = 12.

Problema
(Indicado a partir do 2º ano do E. M.)

(Extraído de: Matem@tica na Pr@tica – Desafio Geométrico; Claudio Carlos Dias, João Carlos Vieira Sampaio)
a) Suponha que em um poliedro convexo o número de vértices é igual ao número de faces. Expresse o número de faces (ou de vértices) em função do número de arestas.
b) Verifique se a afirmação:

  • “Existe um poliedro convexo cujo número de faces é igual ao número de vértices e o número de arestas é ímpar”.

é falsa ou verdadeira e justifique a sua resposta.

Solução

Vamos denotar por [tex] F, A [/tex] e [tex]V [/tex] o número de faces, arestas e vértices de um poliedro convexo, respectivamente.

a) Como o poliedro é convexo, então vale a relação de Euler: [tex]\boxed{F-A+V=2}\,.[/tex]
Observe que, se [tex]V=F[/tex], da relação de Euler segue que:
[tex]\qquad F-A+F=2\\
\qquad 2F-A=2\\
\qquad 2F=A+2[/tex].
Assim, [tex]\, \fcolorbox{black}{#eee0e5}{$V=F= \dfrac{A+2}{2}$}\,. [/tex]

b) A afirmação é falsa, observe o porquê.

  • Se tal poliedro convexo existisse, teríamos que [tex]V=F[/tex] e, então, concluiríamos do item (a) que [tex]F=\dfrac{A+2}{2}[/tex].
    Como o número de arestas supostamente seria ímpar, então [tex]A+2[/tex] seria ímpar e consequentemente o número [tex]\dfrac{A+2}{2}[/tex] não seria um número inteiro.
    Mas isso não pode acontecer, uma vez que [tex]F=\dfrac{A+2}{2}[/tex] e [tex]F[/tex] é o número de faces do poliedro em questão, ou seja, um número inteiro.

Solução elaborada pelos Moderadores do Blog.

Link permanente para este artigo: //clubes.obmep.org.br/blog/probleminha-observando-os-poliedros-convexos/

Esta lista de exercícios possui questões resolvidas sobre poliedros, que são casos particulares de sólidos geométricos. Publicado por: Raul Rodrigues de Oliveira

Os sólidos de Platão são conhecidos como os únicos poliedros regulares, ou seja, todas as faces são iguais. Dos poliedros a seguir, são considerados sólidos de Platão, exceto:

A) cubo.

B) dodecaedro.

C) tetraedro.

D) paralelepípedo.

E) icosaedro.

Um poliedro convexo possui 20 faces e 12 vértices, então o número de arestas desse poliedro é:

A) 20.

B) 24.

C) 28.

D) 30.

E) 32.

(Fuvest) O número de faces triangulares de uma pirâmide é 11. Pode-se, então, afirmar que essa pirâmide possui:

A) 33 vértices e 22 arestas.

B) 12 vértices e 11 arestas.

C) 22 vértices e 11 arestas.

D) 11 vértices e 22 arestas.

E) 12 vértices e 22 arestas.

Analise o sólido geométrico a seguir:

Podemos afirmar que:

(I) esse sólido geométrico possui o total de 10 arestas.

(II) esse sólido geométrico é composto por 5 retângulos e 2 pentágonos.

(III) esse sólido geométrico é um poliedro.

Marque a alternativa correta.

A) Somente I é falsa

B) Somente II é falsa

C) Somente III é falsa

D) Somente I e II são falsas

E) Somente I e III são falsas

Considere as afirmações a seguir sobre poliedros.

I → O cilindro é um poliedro, pois suas faces são formadas por círculos.

II → A pirâmide é um poliedro, pois sua base é um polígono e as suas faces laterais são triângulos.

III →  O trapézio é um poliedro, pois ele possui lados formados por polígonos e é fechado.

Marque a alternativa correta.

A) Somente a afirmativa I é verdadeira.

B) Somente a afirmativa II é verdadeira.

C) Somente a afirmativa III é verdadeira.

D) Somente as afirmativas II e III são verdadeiras.

E) Todas as afirmativas são verdadeiras.

(Enem 2017) Uma rede hoteleira dispõe de cabanas simples na ilha de Gotland, na Suécia, conforme Figura 1. A estrutura de sustentação de cada uma dessas cabanas está representada na Figura 2. A ideia é permitir ao hóspede uma estada livre de tecnologia, mas conectada com a natureza.

A forma geométrica da superfície cujas arestas estão representadas na Figura 2 é

A) tetraedro.

B) pirâmide retangular.

C) tronco de pirâmide retangular.

D) prisma quadrangular reto.

E) prisma triangular reto.

Um poliedro pode ser classificado como convexo ou côncavo, dependendo do seu formato. Veja alguns poliedros.

A) Convexo, convexo e côncavo.

B) Côncavo, convexo e côncavo.

C) Convexo, côncavo e convexo.

D) Convexo, Convexo e côncavo.

E) Côncavo, côncavo e convexo.

Um garimpeiro encontrou uma pedra preciosa que possui o formato igual ao do poliedro a seguir:

Analisando o poliedro a seguir, podemos afirmar que a soma do número de faces, vértices e arestas é igual a:

A) 26.

B) 25.

C) 24.

D) 23.

E) 22.

(Cesgranrio) Um poliedro convexo é formado por 4 faces triangulares, 2 faces quadrangulares e 1 face hexagonal. O número de vértices desse poliedro é de:

A) 6.

B) 7.

C) 8.

D) 9.

E) 10.

(Unirio) Um geólogo encontrou, numa de suas explorações, um cristal de rocha no formato de um poliedro, que satisfaz a relação de Euler, de 60 faces triangulares. O número de vértices desse cristal é igual a:

A) 35.

B) 34.

C) 33.

D) 32.

E) 31.

Considere os sólidos geométricos a seguir.

Podemos afirmar que:

A) somente I é um poliedro.

B) somente II é um poliedro.

C) ambos são poliedros.

D) nenhum deles é um poliedro.

E) ambos são polígonos.

Marque a alternativa que possui somente poliedros.

A) Hexaedro, prisma de base triangular, cone.

B) Esfera, cilindro e tronco de cone.

C) Cubo, pirâmide de base quadrada e prisma.

D) Cubo, cone e cilindro.

E) Tronco da pirâmide, pirâmide e elipse.

respostas

Alternativa D. Os paralelepípedos nem sempre são sólidos de Platão, pois as suas faces não são todas iguais, exceto quando ele é um hexaedro regular. Assim sendo, não podemos afirmar que todo paralelepípedo é um sólido de Platão.

Voltar a questão

Alternativa D.

Sabemos que ele é convexo, logo vale a relação de Euler:

V + F = A + 2

12 + 20 = A + 2

32 = A + 2

A = 32 – 2

A = 30

Voltar a questão

Alternativa E. A pirâmide possui todas as faces laterias no formato de triângulos. Além dessas 11 faces triangulares, há somente mais 1 face, a face da base, que é formada por um polígono de 11 lados e 11 vértices, já que há 11 faces triangulares. Além dos 11 vértices da base, esse polígono possui também o chamado vértice da pirâmide. Assim sendo, esse poliedro possui 12 vértices. Pela relação de Euler, temos que:

V + F = A + 2

12 + 12 = A + 2

24 = A + 2

A = 24 – 2

A = 22

Portanto, 12 vértices e 22 arestas.

Voltar a questão

Alternativa A.

(I) Falsa, pois ele possui um total de 15 arestas.

(II) Verdadeira.

(III) Verdadeira.

Voltar a questão

Alternativa B.

I → Falsa, pois o cilindro é um corpo redondo, e não um poliedro.

II → Verdadeira.

III → Falsa, pois o trapézio é um objeto bidimensional, logo ele é um polígono, e não um poliedro.

Voltar a questão

Alternativa E.

É possível perceber que os ângulos são todos de 90º. Além disso, esse sólido possui bases triangulares, característica essa do prisma triangular.

Voltar a questão

Alternativa D. Um poliedro é côncavo quando, dados dois pontos pertencentes ao poliedro, o segmento que liga esses dois pontos não pertence ao poliedro, caso contrário ele é convexo. O único poliedro que satisfaz a definição para ser côncavo é o III, então:

I → convexo

II → convexo

III → côncavo

Voltar a questão

Alternativa A.

Primeiro vamos contar o número de vértices, arestas e faces na imagem.

A = 12

F = 8

V = 6

Agora, basta realizar a soma:

 A + F + V =  12 + 8 + 6 = 26

Voltar a questão

Alternativa C.

Calculando o total de arestas, temos que:

4 faces triangulares → 4 · 3

2 faces quadrangulares → 2 · 4

1 face hexagonal → 6 

Sabemos que o lado dos polígonos corresponde às arestas do poliedro. Além disso, a aresta é o encontro de duas faces, logo, para encontrar o número de arestas, vamos calcular o total de arestas e dividir por dois, pois elas pertencem a duas faces simultaneamente.

A = (4 · 3 + 2 ·  4 + 6 ) : 2

A = (12 + 8 + 6) : 2

A = 26 : 2

A = 13

O total de faces é 4 + 2 + 1 = 7.

Pela relação de Euler, temos que

V + F = A + 2

V + 7 = 13 + 2

V +  7 = 15

V = 15 – 7

V = 8

Voltar a questão

Alternativa D.

Se ele possui 60 faces triangulares, sabemos que cada face tem 3 arestas; porém, a aresta é o encontro de duas faces, então, para calcular a quantidade de arestas, vamos multiplicar o número de faces por 3 e dividir por 2.

60 · 3 : 2 = 90 arestas.

 Agora, pela relação de Euler, temos que:

V + F = A + 2

V + 60 = 90 + 2

V = 92 – 60

V = 32

Voltar a questão

Alternativa B. Analisando os sólidos geométricos, o I é um cone, que é um corpo redondo e não pode ser classificado como poliedro. Já o sólido geométrico II é um prisma de base pentagonal, que é um poliedro.

Voltar a questão

Alternativa C.

O cubo, as pirâmides e os prismas são todos poliedros.

Voltar a questão

Leia o artigo relacionado a este exercício e esclareça suas dúvidas

Como saber o número de vértices de um poliedro convexo?

Quando o poliedro é convexo, é possível utilizar a relação de Euler, que torna possível calcular a quantidade de vértices, arestas ou faces por meio da fórmula V + F = A + 2.

Quantas vértices tem um poliedro convexo tem?

Relação de Euler.

Quantas arestas é vértices tem um poliedro convexo?

Existem apenas cinco poliedros regulares convexos, que são também chamados de “Sólidos Platônicos” ou “Poliedros de Platão”. São eles: tetraedro, hexaedro (cubo), octaedro, dodecaedro, icosaedro. Tetraedro: sólido geométrico formado por 4 vértices, 4 faces triangulares e 6 arestas.

Qual é o número de faces de um poliedro convexo?

Resposta verificada por especialistas. O número de faces do poliedro convexo é 32.

Toplist

Última postagem

Tag