Qual o destino final dos elétrons dos hidrogênios que entram na cadeia respiratória?

Também chamada de fosforilação oxidativa, a cadeia respiratória é a terceira etapa da respiração celular ou aeróbica, e ocorre na membrana interna da mitocôndria. Nessa etapa, os elétrons obtidos na quebra do átomo de hidrogênio são transportados através do NADH e FADH2 até o oxigênio. Há várias substâncias transportadoras de elétrons na membrana interna da mitocôndria, como proteínas que recebem elétrons do NADH, compostos orgânicos e proteínas que possuem ferro ou cobre em sua composição. Elas formam verdadeiros complexos chamados de cadeias transportadoras de elétrons, por se encontrarem enfileiradas na membrana interna da mitocôndria.

À medida que vão sendo transferidos pela cadeia respiratória, os elétrons perdem energia e, no final da cadeia, conseguem se combinar com o gás oxigênio, formando água. É importante lembrar que, na respiração celular, o gás oxigênio só participa da última etapa, mas, embora não esteja envolvido em nenhuma etapa do ciclo de Krebs, se houver ausência desse gás no ciclo, ele será interrompido.

Não pare agora... Tem mais depois da publicidade ;)

A energia liberada pelos elétrons através da quebra da glicose durante a cadeia respiratória pode formar em torno de 26 moléculas de ATP. Se pegarmos essas 26 moléculas e somarmos com as duas moléculas de ATP produzidas na glicólise e as duas do ciclo de Krebs, alcançaremos um total de 30 moléculas de ATP para uma molécula de glicose. Essa taxa de ATP produzida é menor porque muitos hidrogênios se perdem durante a cadeia respiratória, sendo que apenas 40% da energia proveniente da glicose é armazenada no ATP, enquanto o restante é perdido na forma de calor.

A respiração celular é um processo em que moléculas orgânicas são oxidadas e ocorre a produção de ATP (adenosina trifosfato), que é usada pelos seres vivos para suprir suas necessidades energéticas. A respiração ocorre em três etapas básicas: a glicólise, o ciclo de Krebs e a fosforilação oxidativa.

Tópicos deste artigo

  • 1 - Glicólise
  • 2 - Mapa Mental: Respiração Celular
  • 3 - Ciclo de Krebs
  • 4 - Fosforilação oxidativa

Glicólise

A glicólise é uma etapa anaeróbia da respiração celular que ocorre no citosol e envolve dez reações químicas diferentes. Essas reações são responsáveis pela quebra de uma molécula de glicose (C6H12O6) em duas moléculas de ácido pirúvico (C3H4O3).

O processo de glicólise inicia-se com a adição de dois fosfatos, provenientes de duas moléculas de ATP, à molécula de glicose, promovendo a sua ativação. Essa molécula torna-se instável e quebra-se facilmente em ácido pirúvico. Com a quebra, ocorre a produção de quatro moléculas de ATP, entretanto, como duas foram utilizadas inicialmente para a ativação da glicose, o saldo positivo é de duas moléculas de ATP.

Durante a glicólise também são liberados quatro elétrons (e-) e quatro íons H+. Dois H+ e os quatro e- são capturados por duas moléculas de NAD+ (dinucleotídio nicotinamida-adenina), produzindo moléculas de NADH.

Temos, portanto, a seguinte equação que resume a glicólise:

C6H12O6+ 2ADP + 2Pi + 2NAD+ → 2C3H4O3 + 2ATP + 2NADH + 2H+

Mapa Mental: Respiração Celular

*Para baixar o mapa mental em PDF, clique aqui!

Ciclo de Krebs

Após a glicólise, inicia-se uma etapa aeróbia, a qual inclui o ciclo de Krebs, também chamado de ciclo do ácido cítrico ou ciclo do ácido tricarboxílico. Essa etapa ocorre no interior da organela celular conhecida como mitocôndria e inicia-se com o transporte do ácido pirúvico para a matriz mitocondrial.

Na matriz, o ácido pirúvico reage com a coenzima A (CoA) ali existente, produzindo uma molécula de acetilcoenzima A (acetil-CoA) e uma molécula de gás carbônico. Durante esse processo, uma molécula de NAD+ é transformada em uma de NADH em razão da captura de 2 e- e 1 dos 2 H+ que foram liberados na reação.

A molécula de acetil-CoA sofre com o processo de oxidação e dá origem a duas moléculas de gás carbônico e a uma molécula intacta de coenzima A. Esse processo, que envolve várias reações químicas, é o chamado ciclo de Krebs. Veja o esquema a seguir:

Esse ciclo tem início quando uma molécula de acetil-CoA e o ácido oxalacético reagem e produzem uma molécula de ácido cítrico, liberando uma molécula de CoA. Ocorrem sequencialmente oito reações em que são liberadas duas moléculas de gás carbônico, elétrons e H+. No final desse processo, o ácido oxalacético é recuperado e o ciclo pode ser iniciado novamente. Os elétrons e os íons H+ são capturados pelo NAD+ e transformados em NADH. Eles também são capturados pelo FAD (dinucleotídio de flavina-adenina), que é transformado em FADH2. O ciclo de Krebs resulta em 3 NADH e 1 FADH2.

Não pare agora... Tem mais depois da publicidade ;)

Durante o ciclo, também é produzida uma molécula de GTP (trifosfato de guanosina) a partir de GDP (difosfato de guanina) e Pi. Essa molécula de GTP assemelha-se ao ATP e também é responsável por fornecer energia para a realização de alguns processos no interior da célula.

Fosforilação oxidativa

A última etapa da respiração celular também ocorre no interior das mitocôndrias, mais precisamente nas cristas mitocondriais. Essa etapa é chamada de fosforilação oxidativa, uma vez que se refere à produção de ATP a partir da adição de fosfato ao ADP (fosforilação). A maior parte da produção de ATP ocorre nessa etapa, na qual acontece a reoxidação das moléculas de NADH e FADH2.

Nas cristas mitocondriais são encontradas proteínas que estão dispostas em sequência, as chamadas cadeias transportadoras de elétrons ou cadeias respiratórias. Nessas cadeias ocorre a condução dos elétrons presentes no NADH e no FADH2 até o oxigênio. As proteínas responsáveis por transferir os elétrons são chamadas de citocromos.

Os elétrons, ao passarem pela cadeia respiratória, perdem energia e, no final, combinam-se com o gás oxigênio, formando água na reação final. Apesar de participar apenas no final da cadeia, a falta de oxigênio gera o interrompimento do processo.

A energia liberada através da cadeia respiratória faz com que os íons H+ concentrem-se no espaço entre as cristas mitocondriais, voltando à matriz. Para voltar ao interior da mitocôndria, é necessário passar por um complexo proteico chamado de sintase do ATP, onde ocorre a produção de ATP. Nesse processo são formadas cerca de 26 ou 28 moléculas de ATP.


A respiração ocorre em três etapas básicas: a glicólise, o ciclo de Krebs e a fosforilação oxidativa

No final da respiração celular, há um saldo positivo total de 30 ou 32 moléculas de ATP: 2 ATP da glicólise, 2 ATP do ciclo de Krebs e 26 ou 28 da fosforilação oxidativa.

Importante: Nos seres procariontes, todo o processo de respiração celular ocorre no citoplasma e na membrana celular.


Por Ma. Vanessa dos Santos

Qual o produto final da cadeia respiratória?

O oxigênio estará no fim da cadeia respiratória, recebendo os elétrons que passaram pelas proteínas. Assim, o oxigênio ficará instável e reagirá com íons H+, formando moléculas de água.

O que acontece com o hidrogênio e seus elétrons na última etapa do processo de respiração celular?

Também chamada de fosforilação oxidativa, a cadeia respiratória é a terceira etapa da respiração celular ou aeróbica, e ocorre na membrana interna da mitocôndria. Nessa etapa, os elétrons obtidos na quebra do átomo de hidrogênio são transportados através do NADH e FADH 2 até o oxigênio.

Quem e o Aceptor final de elétrons hidrogênios na cadeia respiratória?

Os eletros resultantes da cadeia respiratória são captados por moléculas de oxigênio, funcionando como aceptores finais de elétrons, produzindo água.

Qual o produto final da cadeia transportadora de elétrons?

No final da cadeia de transporte de elétrons, os elétrons são transferidos para a molécula de oxigênio, que é se divide ao meio e se junta ao H +start superscript, plus, end superscript, formando água. Síntese de ATP causada pelo gradiente.

Toplist

Última postagem

Tag